NPS ARCHIVE 1967 KAUFMAN, L.

INVESTIGATIONS IN THE VACUUM ULTRAVIOLET USING A GRAZING INCIDENCE SPECTROGRAPH

LARRY EDWARD KAUFMAN

Þ

LIBRANY NAVAL POSTGRADUATE SCHOOL NETTERIY, CALIF. S3240

This document has been approved for public release and sale; its distribution is unlimited,

.

m25

INVESTIGATIONS IN THE VACUUM ULTRAVIOLET

USING A GRAZING INCIDENCE SPECTROGRAPH

bу

Larry Edward Kaufman Lieutenant, United States Navy B.S., Naval Academy, 1958

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL June 1967

167 AUFMANL

ABSTRACT

A grazing incidence vacuum spectrograph has been used for studies on high temperature plasmas and to investigate the Tungsten spectra produced by a vacuum spark source. The spectrograph uses a concave grating which has a l-meter radius of curvature and 600 grooves per mm. Incident light strikes the grating at an angle of 8.15⁰, and the diffracted light is collected on a film strip (15-inches long, 35 mm SWR film) which is held along the Rowland circle.

Design and details of construction of the spectrograph and the vacuum spark source are presented. A total of 47 new Tungsten lines were identified from the vacuum spark source using Aluminum and Tungsten electrodes.

TABLE OF CONTENTS

Section		Page
1.	Introduction	9
2.	Vacuum Spark	.9
3.	The Spectrograph	12
	3.1 Theory	12
	3.2 Mechanical Considerations	14
	3.3 Focusing	15
	3.4 Calibration	17
4.	Observations and Results	18
	4.1 Vacuum Spark Source	18
	4.2 Plasma Spectrum	23
5.	Conclusions and Recommendations	36
6.	Bibliography	- 55
	Appendix I	56
	Appendix II	57

LIST OF TABLES

Table		Page
I.	Identified Lines using Carbon and Aluminum Electrodes	19
II.	Spectrum of Tungsten and Aluminum using the Vacuum Spark Source	24
III.	Identified Lines of the Argon Plasma taken at the Midpoint of the Beam	37

LIST OF ILLUSTRATIONS

Figure		Page
1.	Portable Power Supply Console	41
2.	Assembly Drawing of the Trigger Spark-Gap Switch	42
3.	Ringing Frequency of Spark Gap	43
4.	Diagram of Vacuum Grating Spectrograph	44
5.	Blaze Angle Configurations	45
6.	Diagram of Grazing Incidence Spectrograph	46
7.	Top View of Spectrograph	47
8.	Side View of Spectrograph	48
9.	Photograph of Absorption Spectrum of Air	49
10.	Typical Results of Spark Gap Spectrum	50
11.	Spectrum of Carbon and Aluminum Electrodes	51
12.	Spectrum of Tungsten and Aluminum Electrodes	52
13.	Spectrum of Helium Plasma	53
14.	Spectrum of Argon Plasma	5 4

ACKNOWLEDGEMENTS

The continuing advice and assistance of Professor R. L. Kelly of the Naval Postgraduate School is gratefully acknowledged.

I also express my appreciation to Messieurs R. C. Moeller and R. A. Garcia for their technical support.

.

1. Introduction

A steady-state plasma system is in operation at the Plasma Laboratory at the Naval Postgraduate School. Numerous probe measurement experiments have previously been conducted on the plasma system to determine the electron density and temperature. It was desirable to identify the impurities associated with the system and to determine the ionization states of the ionized atom. Since the most intense lines for three-and four-times ionized atoms occur in the vacuum ultraviolet region, the use for a grazing incidence spectrograph is necessary for their observation. A survey spectrograph had been built by R. L. Kelly, but focusing had not been completed. A vacuum spark light source was designed and built for use in focusing the spectrograph.

This report describes the design, construction, and operating parameters of the vacuum spark light source; the focusing, calibration, and optical considerations of the spectrograph; the identification of the impurities associated with the plasma system; and the identification of the spectra of Carbon, Aluminum, and Tungsten obtained from the vacuum spark source.

2. Vacuum Spark Source

In this light source a gap of a few millimeters separates a pair of electrodes, which are held in a vacuum and which are connected to a capacitor charged to some tens of kilovolts. Breakdown is controlled by a spark-gap switch in the power supply console. The power supply (consisting of a thyratron circuit, a trigger circuit, and a charging circuit) is housed in a portable console, as shown in Figure 1. The thyratron circuit has a

variable output of up to 10 kilovolts. A 5C22 hydrogen-filled thyratron is held at ground potential until a trigger pulse fires the thyratron. The trigger circuit employs a standard EFP pentode with a variable input of 2 kilovolts; an output pulse with a rise time of less than 8 η s and pulse width of 2×10⁻⁷ seconds is generated by this circuit. The charging circuit consists of a low inductance, high voltage capacitor of 0.5 μ f connected to a 20 kilovolt variable power supply.

The spark-gap switch is basically the same type as reported by Lupton [1]. Figure 2 is an assembly drawing of the switch. The cathode and anode are made of cylindrical brass stock with the ends rounded to form hemispheres of 1% inch diameter. The trigger pin (which is connected to the thyratron circuit) is brought through the cathode in a teflon insulator. The backstrap is spaced very closely to the electrodes, but is insulated from the anode by a Mylar sheet. The function of this arrangement is to reduce erosion of the narrow arcing points where the holdoff voltage is established; the magnetic force caused by the load current flowing through the connecting backstrap during discharge repels the electric arc to the outward surface of the switch electrodes.

The spark-gap switch is mounted on top of the capacitor. The spacing between the brass electrodes of the spark-gap switch is set to determine the breakdown voltage. This gap setting can easily be varied to hold off any voltage up to the maximum input voltage of 20 kilovolts. For example, a spacing of 6 mm is sufficient to hold off 18 kilovolts.

After the spark-gap switch has been set to hold off the desired voltage, the trigger circuit is actuated either by using a manual push button located on the front of the power supply, or by using a timer with a 15 second on/off cam. The activation of the trigger circuit permits the thyratron circuit to deliver a 10 kilovolt pulse to the trigger pin of the spark-gap switch as shown in Figure 2. This pulse ionizes the gas between the brass electrodes, reducing the effective gap of the electrodes sufficiently for the switch to fire.

The spark-gap switch in the power supply console is connected electrically across a glass pipe T which is attached to the front of the spectrograph. The end plates for the glass T hold the electrodes, one of which is fixed and the other adjustable. The electrodes are under the same vacuum as the spectrograph so their gap setting must be made considerably less than that for the spark-gap switch if the switch is to control the spark. For instance, at a pressure of 2 microns, the gap setting of the electrodes is only 2 mm with the spark-gap switch set for a breakdown voltage of 18 kilovolts. The voltage breakdown of the spark-gap switch provides the path for the voltage to appear across the glass electrode holder. The glass T electrode holder is shown with the portable power supply console in Figure 1.

An extremely low inductance is mandatory where high values of peak current are desired. The inductance of the circuit at a breakdown voltage of 15 kilovolts was found to be 1.20 microhenrys, giving a ringing frequency of 206 kilocycles. The ringing frequency is shown in Figure 3. The inductance of the

0.5 μ f capacitor used in the charging circuit was 0.025 microhenrys. The circuit inductance is higher than anticipated, and may have to be reduced to obtain larger spark currents.

3. Spectrograph

3.1 Theory

The theory of the concave grating has been discussed in detail by Beutler [2], by Mack, Stehn, and Edlen [3], with recent contributions by Namioka [4]. Only the basic Rowland conditions will be presented in this report.

If a concave grating of radius ρ is tangent to a circle of diameter ρ , the spectrum will be focused in the circle if the entrance slit is also in the circle. More precisely, if φ is the angle at the grating between the normal to the grating and the incident light, with ψ the angle of diffraction, then:

$$\frac{ds}{dn} = \frac{\rho}{e \cdot \cos \psi} \tag{1}$$

where s is the distance along the Rowland circle form the central image to the position of a spectral line of wavelength λ , and e is the distance between the grooves of the grating. Figure 4 shows a diagram of a vacuum grating spectrograph at grazing incidence.

For $\frac{1}{p}$ =600 grooves/mm and ρ =1 meter:

$\underline{\psi}$	dr/ds
00	16.7 A/mm
70	5.71
75	4.32
80	2.90
81.5	2.48
82	1.45

Upon integrating equation (1) we obtain:

$$\lambda = e(\sin \varphi - \sin \psi)$$

(2)

The distance from the center of the grating to a point on the Rowland circle is given by 2R cos ψ , as shown in Figure 4.

Gratings are usually "blazed" in such a way as to throw most of the diffracted energy into a particular region of the spectrum. It has been shown by Wood [5] that as much as 75% of the incident light can be directed into a particular order with a sharp blaze. Figure 5 shows the two ways in which the blaze angle can be used. The equation relating blaze wavelength to the angle of incidence is:

$$\pm \lambda_{B} = \frac{e}{m} \sin((\omega \pm 2\alpha)) - \frac{e}{m} \sin(\omega)$$
(3)

where m is the order of diffraction, \mathcal{Q} the angle of incidence, and $\boldsymbol{\prec}$ the blaze angle. The plus and minus signs result from the fact that the incident light may be brought to the grating at an angle on either side of the normal, as seen in Figure 5. The result is that the blaze direction is either $\mathcal{Q}_{+2}\boldsymbol{\prec}$ or $\mathcal{Q}_{-2}\boldsymbol{\prec}$. With a blaze angle of 4^{0} 45':

<u> l</u>	$+N_B(m=1)$	$-\lambda_{B}(m=1)$
o ^o	2760 A	2760 A
10	2650	2755
20	2505	2672
30	2271	2505
40	1954	2255
50	1587	1954
60	1186	1570
70	723	1164
80	251	701
81.5	184	634

Only the arrangement utilizing Q -2 \propto is useful at grazing incidence.

The grating used in this research was a Bausch and Lomb replica, type 472, with a one meter radius of curvature and 600 grooves per mm. The blaze angle of the grating was 4° 45', with a blaze wavelength of 634A at an angle of incidence of 81.5° . 3.2 Mechanical Considerations

The decrease in reflection at normal incidence of all grating material necessitates the use of grazing incidence spectrographs for wavelength below 1000A. At normal incidence, the best reflection for the range 1000A to 500A is shown by platinum, which has about 24 percent reflectance at 584A [6]. Below 500A, reflectances at small angles are very poor, with a 1-3 percent reflectance for platinum at 303A [7]. At grazing incidence, most metals show good reflectivity. However, there is a short wavelength cut-off which depends on the angle of incidence, the light source, the detector, and other factors. The Naval Postgraduate School spectrograph is designed so that an angle of incidence of approximately 82⁰ will cover the wavelength region from about 150A to 2250A on a 15 inch strip of film. Mechanical considerations set the angle of incidence at 81.5⁰.

The basic features of the spectrograph are shown in Figure 6. It is made of non-magnetic materials because of its use in rather large magnetic fields. The slit assembly is held in a tube which is welded into the front plate. The grating and film holder are supported by a channel beam which is bolted to the front plate, as shown in Figure 7.

The film holder consists of four plates of Aluminum which have been shaped on one edge to a diameter of one meter. The

plates are bolted together in pairs and spaced to accept 35 mm film.

The slit assembly consists of three plates housed in a twoinch diameter brass tube. The front plate has a rectangular opening covered by stellite slit jaws that form the entrance slit. The second plate eliminates light which might reflect directly off the walls of the tube onto the film. The third plate consists of adjustable brass plates which control the aperture of the grating. The Rowland circle conditions and the positions of the slit, grating, and film holder can best be seen in Figures 6 and 7.

The vacuum envelope consists of a 10-inch Aluminum tube which bolts to the front plate and which has a back plate bolted onto it. To allow film loading in daylight, a changing bag is fastened around the back plate. The back plate is removed inside the changing bag, the film is slid into the channel of the film holder, and the back plate is bolted on. The exposure time is controlled by a gate valve which also serves to isolate the spectrograph from the system being tested. The gate valve and the connection to the plasma system are shown in Figure 8.

3.3 Focusing

The adjustment and focusing of the grazing incidence spectrograph are dependent upon the accurate positioning of the slit, grating, and film holder. With increasing angle of incidence, the astigmatism of the grating increases rapidly. Further, it becomes very important that the slit be parallel to the grooves

of the grating to achieve good resolving power. The resolving power of a grating will increase as the slit width is decreased. However, it has been shown by Mack, Stehn, and Edlen [6], that the resolving power below about 200A is limited not by the grating, but rather by the finite slit width that must be used to avoid clogging of the slit by the particles from a spark source. Slit widths are therefore usually not less than about 4 microns. In order to obtain sufficient intensities, the entrance slit of the Naval Postgraduate School spectrograph was set at 15 microns for all survey work up to the present. Thus, the resolving power of this spectrograph is not as high as can be achieved.

To help in the positioning of the equipment, a template was used that matched the radius of the Rowland circle. Templates can be made from either wood or cardboard, and both types were used in the focusing runs. Since the distances are known between the slit, grating, and the central image, the template can be used to fix the rough position of the trio. Whenever readjustments were necessary, the template was used to reposition the grating; since the slit mounting and film holder are nonadjustable after their initial positions are fixed, the grating provides the sole adjustment to the system.

As much of the focusing as possible was done in air, with two methods being used. The Rowland circle can be extended, as shown in Figure 6, until the visible spectrum can be seen. The spectrograph can then be focused for two points on the circle, such as the central image and the visible Hg 5461A line. All the other wavelengths will then be in focus to a first approxi-

mation. The second method utilizes the short wavelength continuous spectrum of the mercury lamp to obtain the absorption spectrum of air. Sharp absorption lines indicate good focus at the long wavelength end of the spectrograph. If the film fits the focal curve of the camera holder correctly, this procedure also brings all shorter wavelengths into focus. An example of the absorption spectrum taken with the spectrograph is shown in Figure 9.

The preliminary adjustments can be done in air, but the final adjustments must be done in a vacuum. All of the focusing runs were done at a pressure of 2-3 microns, using the vacuum spark with Carbon and Aluminum electrodes. The Aluminum spectrum adequately covers the entire region between 150A and 2250A, and Carbon gives lines that are easy to identify. Focus runs using 200 sparks at 18 kilovolts gave spectra of good intensity. A total of 30 runs was necessary to focus the spectrograph. Fjure 10 shows the resolving power achieved when the spectrograph was in good adjustment.

3.4 Calibration

Many of the calibration calculations were done with the aid of the computer. A computer program was written from the grating equation, with the print-out including distances from an arbitrary reference point and the dispersion at given wave-lengths. The program is given in Appendix I. The position of lines were calculated relative to C IV Λ 1548, C III Λ 977, and C IV Λ 384 becuase of their prominence. The obvious Carbon and Oxygen lines were identified initially, with the computer

program then being interpolated to position the remaining lines. The wavelengths and intensities were then compared with those found in the book by Kelly [8].

In later work, a program using least square curve fitting with orthogonal polynomials was used [9]. This program is discussed in Appendix II. To use this program, the film strip must be measured accurately with regard to position, The lines with known wavelength and position are used for the original abscissas, and the unknown line positions form the data card deck. The program computes the wavelength associated with the unknown line position and also computes the error of the original abscissa points. When the position points are limited to cover only about 400A of the spectrum, the program is capable of computing wavelengths within ± 0.2 A of the actual value with a few iterations. For greater accuracy, it is necessary to increase the number of original abscissa points, and to disregard all broad lines. It must be emphasized that either program can only be as accurate as the line positions, and erroneous line positions when recognized must be omitted.

4. Observations and Results

4.1 Vacuum Spark Source

Runs using Carbon and Aluminum were conducted at a breakdown voltage of 18 kilovolts with the spectrograph at a pressure of 2 microns. The exposure time was determined by the time necessary to apply 200 sparks to the system. Figure 11 shows an exposure made with the vacuum spark source using Carbon

TABLE I

IDENTIFIED LINES USING CARBON AND ALUMINUM ELECTRODES

N IDENTIFICATION		
N		
215.128	OV	
220.352	OIV	
238.467	Al VI	
243.760	Al VI	
259.506	C IV	
278.699	Al V	
281.397	Al V	
303.740	O III	
307.248	Al VI	
308.560	Al VI	
309.012	Al VII	
309.596	Al VI	
310,908	Al VI	
312.241	Al VI	
320.146	Al IV (2×160.073)	
320.979	O III	
323.372	Al IV (2×161.686)	
384.032	C III	
384.178	C III	
419.620	C IV	
459.462	C III	
459.521	C III	
476.934	Al VI (2x238.467)	
480.219	Al IV (3x160.073)	
485.058	Al IV (3x161.686)	
487.520 499.462 499.530 507.391 507.683	Al IV (2×243.760) C III C III O III O III O III	
508.182	0 III	
519.012	C IV (2×259.506)	
525.795	0 III	
538.256	0 II	
538.433	0 II	
599.598	0 III	
607.480	0 III (2×303.740)	
614.496	Al VI (2×307.248)	
617.120	Al VI (2×308.560)	
618.024	Al VII (2×309.012)	

N	IDENTIFICATION
619.192 621.816 624.482 629.732 640.292	Al VI (2×309.596) Al VI (2×310.908) Al VI (2×312.241) O V Al VI (4×160.073)
646.744 702.322 702.822 702.899 703.850	Al VI (4×161.686) [.] O III O III O III O III O III
715.401 718.484 718.562 731.280 778.518	Al VI (3×238.467) O II O II Al VI (3×243.760) C IV (3×259.506)
787.710 790.103 790.203 832.754 832.927	O IV O IV O IV O IV O II O III
833.326 833.742 834.462 835.096 835.292 858.094 858.561 903.950 904.134 911.220	O II O III O II O III O III C II C II C
921.744 925.680 927.036 928.788 932.724	Al VI (3×307.248) Al VI (3×308.560) Al VII (3×309.012) Al VI (3×309.596) Al VI (3×310.908)
936.723 977.026 1009.854 1010.074 1010.369	Al VI (3x312.241) C III C II C II C II C II

· 2

TABLE I concluded

N	IDENTIFICATION
1036.330	C II
1037.020	C II
1076.512	O II (2×538.256)
1076.866	O II (2×538.433)
1174.916	C III
1175.700	C III
1176.351	C III
1214.960	O III (4×303.740)
1247.368	C III
1323.916	C II
1334.520	C II
1335.692	C II
1548.195	C II
1550.768	C IV
1560.687	C I
1605.776 1611.849 1670.810 1719.430 1712.279	Al III Al III Al II Al II Al II Al II
1724.981 1760.103 1761.979 1763.892 1763.947	Al II Al II Al II Al I Al I Al II
1765.811 1767.735 1854.720 1855.928 1858.031	Al II Al II Al III Al III Al II Al II
1859.990	Al II
1862.318	Al II
1862.795	Al III
1930.902	C I
1930.930	C I
1931.927	C III
1990.530	Al II

and Aluminum electrodes. The lines are identified in Table I. Good resolution of the O II and O III groups at 834A was indicated. Al VII was the highest ionization state obtained.

The vacuum spark was utilized to investigate the Tungsten spectrum. Since it was felt that the previous work in Aluminum would provide good calibration points for the Tungsten spectrum, the spark source was used with Aluminum and Tungsten electrodes. Runs were conducted under the same conditions as previously stated. Figure 12 shows an exposure of the spectrum obtained with the lines identified in Table II. Most of the lines of this spectrum were not found in the literature [8]. The least-square-curvefitting computer program was used for this spectrum with a total of 150 abscissa points (known lines of C, Al, O, and N), and 106 unknowns. The average error between the original and computed abscissa values was found to be \pm 0.05A. It was reasonable to assume that the unidentified lines in the spectrum should also be accurate to within \pm 0.05A.

The last column in Table II lists the elements that have a known line within ± 0.3A of the unidentified wavelength shown. Those unidentified lines with no element listed except Tungsten are assumed to be Tungsten lines. Several elements which have been studied extensively, and which have many lines, have never-theless been excluded from consideration. These include Bi, Cu, Cl, F, Hg, Pd, Sc, and Zn.

The shortest wavelength identified in using the spark source was in the O IV group at 150A. Some lines did appear at shorter wavelengths, but they were so faint that accurate identification

was impossible. It appears that the short wavelength end of the spectrum is limited by the grating (a platinum-coated grating has recently been obtained to improve intensities at short wavelengths). 4.2 Plasma Spectrum

The plasma system at the Naval Postgraduate School consists of a nine-foot long assembly of four-inch pyrex sections with access ports at 14-inch intervals. The continuous plasma source is a hollow cathode discharge operating in a reflex configuration at a cathode pressure of one micron. The longitudinal magnetic: field is variable up to 10,000 gauss, and the discharge carries up to 200 amps at 140 volts.

The sprectrograph was used to investigate the elements and stages of ionization in this plasma system. The spectrograph was set up to look across the line of plasma at a position midpoint down the stream, Exposure times of up to seven minutes were necessary with the discharge at 100 amps and 140 volts. Various magnetic fields were used, with the majority of runs being made at 1000 gauss.

Figure 13 shows an exposure of the Helium plasma obtained from the system. These lines were used to calibrate the spectrograph for use with an Argon plasma. Figure 14 shows the spectrum from the Argon plasma. The lines are identified in Table III.

The observation of O IV in the Argon plasma shows that there are electrons with energies of at least 77 volts, while the absence of O V shows there cannot be many with energies as high as 114 volts. The argon plasma also showed very few lines at the long wavelength end of the spectrum. This may be due to the blaze angle of the grating being used.

TABLE II

SPECTRUM OF TUNGSTEN AND ALUMINUM USING THE SPARK GAP SOURCE

N	INT*	IDENTIFICATION			
150.088	30	O VI			
150.124	30	O VI			
160.073	30	Al IV			
161.686	30	Al IV			
172.168	30	O V			
172.935	10	0 VI			
173.082	10	0 VI			
192.751	50	0 V			
192.800	50	0 V			
192.906	50	0 V			
194.593	30	0 V			
197.007	10	N IV			
198.031	30	0 V			
198.7	30	W ? Mo VII ?			
199.2	30	W ?			
199.6	30	W ? Ti VII ?			
200.3	30	W ?			
201.8	10	W ? Ti VI ?			
202.191	10	O V			
202.226	10	O V			
202.282 203.836 207.183 207.229 207.794	10 70 70 70 70 70	0 V 0 V 0 IV 0 IV 0 V			
214.032	50	0 IV			
215.245	50	0 V			
216.018	100	0 V			
216.3	70	W ? Ni VII ?			
220.352	100	0 V			
221.1	10	W ?			
221.648	30	O IV			
222.791	50	C IV			
223.9	70	W ? Fe VIII ? Co III ?			
225.299	30	O IV			
226.2	30	W ? Ni VII ? Co VII ?			
227.468	70	O V			
227.549	70	O V			
231.101	100	O IV			
231.200	100	O IV			

	TABLE	II co	ntinued	
N	INT	IDENTIFICATION		
231.823 233.561 233.596 238.361 238.573	50 100 100 100 100		V IV IV IV IV	
239.030 240.770 242.140 243.760 246.563	70 50 10 100 100	A1 A1 0 A1 0	VII VII IV VI IV	
247.563 248.5 249.7 250.2 251.347	10 50 30 50 50	N W ? W Al	V Mn VII ? VIII	
252.3 252.564 253.082 253.8 254.3	30 30 30 30 50	W 0 W ? W ?	IV IV	
254.6 255.5 256.0 259.0 259.127	50 30 10 30 30	W ? W ? W ? W Al	Mo VII ? VII	
259.458 260.389 260.556 261.219 261.696	30 70 70 70 70	A1 0 0 A1 A1	IV (2×129.729) IV IV VII V:(2×130.848)	
263.768 265.260 266.932 268.0 268.6	10 10 50 30 30	0 A1 0 W ? W ?	III V (2×132.630) IV	
268.9 269.9 270.583 272.270 274.6	30 50 50 100 50	ຟ ພ C ພ	III III	

	TABLE		ntinuea
N	INT	ID	ENTIFICATION
275.366 276.108 276.5 278.699 279.1	70 30° 70 100 50	0 0 W ? A1 W ?	III V Co VI ? V Co VI ?
279.456 279.633 279.937 281.397 283.420	50 50 70 100 50	D D Al N	IV IV IV V IV
284.042 285.467 285.714 285.838 286.448	50 70 70 70 30	A1 A1 0 0 0	IX VIII IV IV V
289.230 295.657 300.176 300.248 303.799	50 30 50 50 30		IV III VI (2×150.088) VI (2×150.124) III
305.596 305.703 305.836 307.248 308.560	70 70 70 70 70	0 0 A1 A1	III III III VI VI
309.012 309.596 309.852 310.908 312.418	70 100 100 70 70	Al Al Al Al C	VII . VI VI VI IV
312.455 320.146 320.979 323.372 324.8	70 50 70 70 50	C Al O Al W ?	IV IV (2×160.073) III IV (2×161.686)
325.4 328.200 328.742 329.4 332.891 333.8	30 50 50 50 50 30	W Al O W ? Al W ?	VIII III Mn VI ? X

TABLE II continued

TABLE II continued

N	INT	ID	ENTIFICATION
334.3 336.0 338.7 343.290 343.650	30 50 30 50 50	W W ? W ? Al Al	VII VII
344.336 345.309 345.870 349.116 351.1	50 30 70 50 50	0 0 0 W ?	V (2×172.168) III VI(2×173.082) V (2×174.558) Mg V ?
352.160 353.000 353.9 354.2 355.137	70 70 70 50 50	A1 C W W ? C	VII III Mg V ? III
355.333 356.900 359.016 359.223 367.7	50 70 30 30 50	0 W 0 W ?	III III Mg VII ?
368.0 371.2 373.805 376.1 376.3	50 50 100 30 30	Ш ? Ш ? Ш ? Ш ?	Mg IX ? III
377.8 379.505 380.7 381.689 384.105	30 30 10 70 70	W ? O W ? Al C	Mo VI ? III Ti VI ? VIII IV
385.0 385.505 387.398 387.639 388.8	70 70 50 50 50	W ? C C W ?	Ti V ? V (2×192.751) III III Ti V ? C II ?
389.187 390.8 391.943 392.544 393.8	30 30 30 30 100	A1 W ? O A1 W ?	V (3x129.729) II V (3x130.848)

TABLE II continued

1					
	N	INT	IDENTIFICATION		
	395.0 396.062 397.120 398.4 399.2	50 40 50 30 30	0	V (2×198.031) III (2×199.2) Ti VII ? (2×199.6)	
	400.2 400.6 401.182 401.7 403.035	40 40 30 30 40	W ? W ?` Al W ? D	(2×200.3) X Mn V ? Fe V ? II	
	403.300 403.9 404.3 407.3 408.5	40 50 50 100 30	0 W ? W W	II Mn V ? Mn V ?	
	410.0 410.5 410.9 414.0 415.0	30 30 30 50 70	ພ ? ພ ? ພ ພ ? ພ	Mn V ? Mo V ? Fe V ?	
	415.588 418.0 419.620 421.6 422.1	50 30 50 30 30	0 W ? C W W ?	V (2×207.794) Fe V ? IV Mn V ? Fe V ?	
	428.064 430.041 430.177 431.6 432.036	50 70 70 50 50	0 0 W ? 0	IV (2×214.032) II II Mo V ? Fe V ? V (2×216.018)	
	434.646 438.5 440.5 444.6 445.638	30 30 70 30 30	U U U 2	III	
	447.5 450.264 451.869 454.3 454.748	50 70 70 50 50	ພ 0 N ພ ?	VI (3x150.088) III V (2x227.374)	

TABLE II continued						
N INT		IDENTIFICATION				
459.521	50	C III				
459.633	50	C III				
461.8	50	W ?				
462.202	50	O IV (2×227.37				
463.646	40	O V (2×231.823				
467.122 476.722 477.146 478.060 480.219	100 70 70 60 70	0 IV (2×233.56 0 IV (2×238.36 0 IV (2×238.57 A1 VII (2×239.0 A1 IV (3×160.07	1) 3) 30)			
481.540	70	Al VII (2x240.7	6)			
483.618	30	C III				
485.058	50	Al IV (3x161.68				
486.950	30	Al III				
487.520	70	Al VI (2x243.76				
493.587	30	C III	3)			
495.126	30	N V (2×247.563				
495.5	50	W				
497.0	70	W (2×248.5)				
498.9	30	W ?				
500.4	50	W (2×250.2)				
501.9	50	W ?				
502.694	50	Al VIII (2×251.				
503.8	50	W ?				
505.128	30	D IV (2×252.56				
505.4	30	W ?	32)			
505.7	30	W ?				
506.164	30	O IV (2x253.08				
507.391	70	O III				
507.683	70	O III				
508.182	70	0 III				
508.6	30	W ? (2×254.3)				
509.4	50	W				
510.757	30	N II				
511.523	30	C II				
516.504	70	D V (3x172.168				
517.069	30	C II				
517.937	30	O II				
518.242	30	O II				
518.805	70	A1 V (4x129.729				

TABLE II continued

N	INT	II	DENTIFICATION
519.246 520.2 520.778 521.114 521.6	70 30 50 50 50	0 W ? 0 W ?	VI (3x173.082) IV (2x260.389) IV (2x260.556)
522.438 523.392 525.795 527.536 530.290	50 30 70 30 30	A1 A1 0 C	VII (2×261.219) V (4×130.848) III III (2×263.768) II
530.9 533.9 536.0 537.2 537.8	30 50 30 30 40	Ш ? Ш ? Ш ? Ш ? Ш	Ma VI ? (2×268.0) (2×268.9) (2×268.9)
539.8 540.7 541.8 542.3 544.540 547.6 550.732 553.328 554.514 555.262	50 40 30 50 70 30 70 70 100 70	Ш Ш? Ш? С Ш? С	(2×269.9) Mn IV ? Mn IV ? Mn IV ? III (2×272.270) III (2×275.270) IV IV IV
557.398 559.266 559.874 562.794 564.5	100 50 50 70 30	A1 0 0 0 W ?	V (2x278.699) IV (2x279.633) IV (2x279.937) IV (2x281.397)
564.663 565.2 566.840 568.084 570.934	30 30 50 50 50	C W N Al Al	II IV (2×283.420) IX (2×284.042) VIII (2×285.467)
571.428 571.766 572.896 576.5 578.460	50 50 30 30 50	0 0 W ? C	IV (2×285.714) IV (2×285.838) V (2×286.448) Fe IV ? IV (2×289.230)

TABLE II continued

N	INT	IDENTIFICATION				
581.5 588.4 591.314 597.818 599.598	30 30 30 30 70	W ? W O O	Mn IV ? III (2×295.657) III III			
600.342 600.9 608.395 609.2 609.829	70 30 70 70 70	0 W ? U U	II (4×150.088) (3×200.3) IV IV			
610.746 611.192 611.406 611.672 613.1	50 70 70 70 50	0 0 0 0	III III (2×305.596) III (2×305.603) III (2×305.836)			
613.8 614.496 617.120 618.244 619.192	30 70 70 70 70 70	W ? Al Al Al Al Al	VI. (2×307.248) VI (2×308.560) VII (2×309.122) VI (2×309.596)			
619.704 621.816 623.382 624.617 625.852	70 70 50 30 70	A1 A1 0 0	VI (2×309.852) VI (2×310.908) V (3×207.794) IV IV			
627.6 629.732 635.180 639.7 640.292	40 70 30 60 60	W D N W ? Al	V II IV (4×160.073)			
641.958 644.148 645.167 646.744 648.054	70 30 50 70 30	D D N Al D	III (2×320.979) II II IV (4×161.686) V (3×216.018)			
648.645 650.900 654.240 655.2 656.400	50 30 40 30 50	Al W Al W ? Al	IV (5x129.729) (2x325.4) V (5x130.848) Mn IV ? VIII (2x328.200)			

TABLE II continued

N	INT	I	DENTIFICATION
657.0 657.484 658.3 658.758 661.056	30 30 30 30 100	W ? 0 W ? 0	Mn IV ? III (2×328.742) III IV (3×220.352)
667.6 668.6 671.391 672.0 677.4	30 30 50 40 70	ຟ ? ຟ N ຟ ? ຟ ?	(2×333.8) II (2×336.0) (2×338.7)
686.580 687.300 688.672 690.618 691.740	30 . 50 50 30 60	A1 A1 0 0	VII (2×343.290) VII (2×343.650) V (4×172.168) III (2×345.309) V (3×172.935)
692.328 693.303 700.683 702.322 702.899	60 30 50 60 60		V (3×173.082) IV (3×231.101) IV (3×233.561) III III
703.850 704.320 706.000 707.8 708.4	60 60 70 50 <i>3</i> 0	0 A1 C W W ?	III VLI (2×352.160) III (2×353.9) (2×353.9) Mg V ? (2×354.2)
710.666 713.800 715.719 716.800 718.484	40 70 70 50 50	0 W 0 W	II (2×355.333) (2×356.9) IV (3×238.361) II
718.562 722.310 731.280 742.689 745.5	50 50 70 30 30	O Al Al N W	II VII (3×240.770) VI (3×243.760) V (3×248.5) (3×248.5)
748.1 750.6 754.041 758.677 759.440	50 50 30 70 70	W ? W A1 O O	Ni III ? O I ? (3x250.2) VIII (3x251.347) V V

TABLE II continued

N	INT	I	DENTIFICATION
760.229 761.130 762.001 763.340 764.357	70 70 70 30 50	0 0 0 N N	V V V IV IV
765.140 768.210 770.9 771.544 774.522	50 70 30 30 70	N C W N O	IV IV (2×384.105) III V
775.957 776.9 777.657 779.821 781.167	30 10 10 70 30	N W ? Al O O	II Ti IV ? Co III ? VII (3x259.219) IV IV (3x260.389)
781.668 783.657 783.886 787.710 788.3	30 30 30 70 50	0 Al 0 0 W ?	IV (3×260.556) VII (3×261.219) II (2×391.943) IV Co III ?
790.103 790.203 796.661 797.6 800.363	100 100 10 10 50	0 0 0 W ? Al	IV IV II IV(5×160.073)
802.224 806.384 806.7 809.3 816.0	30 30 30 30 30 30	0 C W W W ?	IV II (3×268.9) Fe III ?
816.810 826.098 832.754 833.326 833.742	30 40 70 70 70 70		III (3×272.270) III (3×275.366) II II II III
834.462 835.292 838.899 839.240 839.811	70 70 30 30 30	0 0 0 C 0	II III IV (3x279.633) IV (2x419.620) IV (3x279.937)

TABLE II continued

N	INT	I	DENTIFICATION
843.2 881.0 903.609 919.364 921.364	70 10 30 30 10		(2×421.6) (2×440.5) II III (2×459.521) III
921.982 923.6 925.680 927.036 927.366	50 50 40 30 30	N W Al Al Al	IV VI (3×308.560) VII (3×309.012) VII (3×309.122)
928.788 929.556 932.724 936.8 937.365	70 40 50 50 30	Al. Al Al W ? C	VI (3×309.596) VI (3×309.852) VI (3×310.908) IV (3×312.455)
963.080 969.8 977.027 1014.782 1015.366	50 30 100 40 50	A1 W ? C O	VII (4×240.770) Fe II ? Co III ? III III (2×507.391) III (2×507.683)
1016.364 1031.912 1036.330 1037.020 1051.590	50 100 70 70 50		III (2×508.182) VI II II III (2×525.795)
1106.656 1108.148 1109.028 1110.524 1168.2	70 70 70 70 50		IV (2×553.328) IV (2×554.074) IV (2×554.514) IV (2×555.262)
1175.742 1199.196 1216.790 1219.658 1238.800	100 50 50 50 40		III III (2×599.598) IV (2×608.395) IV (2×609.829) V
1242.778 1247.383 1334.520 1335.692 1343.507	10 10 50 30	N C C C O	V III II II IV

TABLE II concluded

Ν	INT	IDENTIFICATION
1371.287	70	0 V
1468.2	30	W
1517.350	10	O V (2x758.677)
1520.460	30	O V (2x760.229)
1522.260	10	O V (2x761.130)
1524.000	10	0 V (2×762.001)
1548.195	70	C IV
1550.768	70	C IV
1605.750	50	Al III
1611.850	70	Al III
1670.786	30	Al II
1724.575	30	W
1854.720	70	Al II
1862.318	70	Al II
1889.196	10	Al II

* All intensities are visual estimates

of film blackening.

Observations were made to investigate the effect of the variation of the magnetic field on the Argon plasma. The magnetic field was varied from 900 gauss to 2000 gauss. There was no apparent change in relative intensities. The only effect detectable on inspection of the line intensities was that the plasma beam varied with the magnetic field, as indicated by the length of the image spectral lines. These results were obvious upon looking at the film strips, but the contact prints made from these negatives do not show sufficient detail to be included in this report . There was no evidence of any great changes in the relative amounts of ionization with the variations in the magnetic field.

All of the lines listed in Table III as coming from Carbon, Oxygen, and Nitrogen are the result of accidental impurities. These occur in the residual gas, and they may also arise from the plasma beam interacting with the electrodes or the glass walls of the discharge system.

5. Conclusions and Recommendations

The number of unidentified lines in the Tungsten spectrum point out the many gaps found in the literature concerning this spectra. In future work it is suggested that the plasma system be used to produce Tungsten spectra. Tungsten can be evaporated into the plasma system by lowering Tungsten wires into the plasma beam. It was apparent that the electron energy available for excitation has a definite upper limit determined by the anode voltage. At an operating voltage of 140 volts, no spectra

36

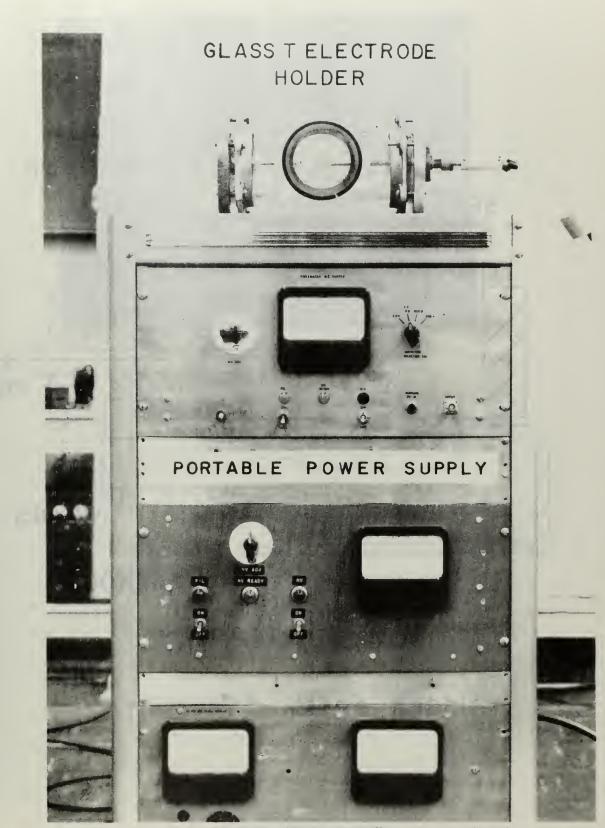
TABLE III

IDENTIFIED L	LINES C	IF THE	ARGON	PLASMA	TAKEN	AT	MIDPOINT	OF	BEAM
--------------	---------	--------	-------	--------	-------	----	----------	----	------

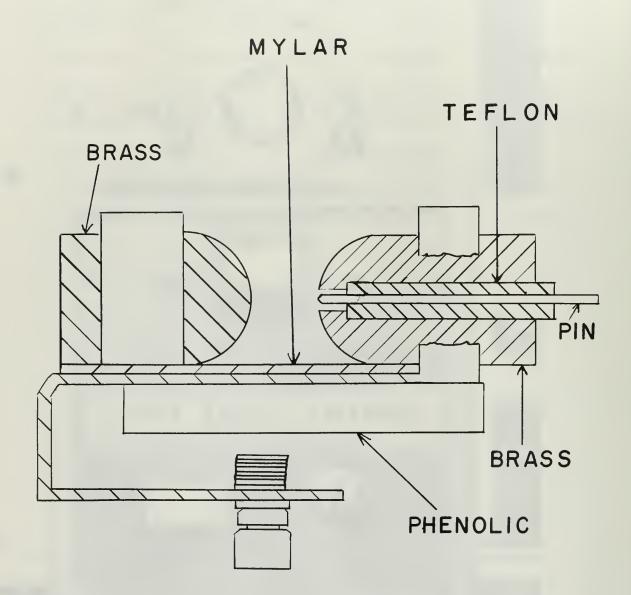
λ	IDENTIFI- CATION	INT	r	IDENTIFI- CATION	INT
303.786 327.112 328.448 345.309 346.372	He II C III O III O III O IV	70 30 30 30 30 30	488.452 488.793 489.195 490.680 491.121	A III A II A II A III A III A III	30 50 50 70 70
346.688 352.058 353.000 371.694 395.920	D IV N IV C III C III A III	30 50 30 50 30	492.228 492.408 492.650 501.190 502.163	A III A II D III A II A II	30 30 50 10 10
396.380 396.869 398.546 398.860 399.634	A III A IV A IV A III A IV	70 70 50 10 10 ·	503.650 507.537 508.441 508.611 510.556	A II D III A III A III A III A II	10 70 100 100 30
429.557 436.510 443.296 450.734 451.869	O II O II O IV C III N III	10 10 100 50 70	511.505 512.770 519.327 522.792 524.680	A III A III A II A II A II A II	70 50 70 70 70
452.226 459.462 459.633 466.530 467.390	N III C III C III A III A III A III	70 70 70 10 70	526.497 528.650 529.900 530.495 532.413	A II A II A III A III A II A III	10 50 70 50 50
468.467 468.956 469.831 473.025 473.918	A III A III A III A III A III A III	50 50 100 30 50	535.580 536.745 537.459 538.312 538.788	A III A III A III C III A III	100 70 30 70 50
476.432 477.625 481.848 482.548 484.116	A III C III A III A III A III A III	100 30 50 50 50	542.912 543.203 543.731 546.177 547.165	A II A II A II A II A II A II	30 70 70 50 30
484.445 485.150 485.515 487.025 487.988	A III A III A III A III A III A III	50 50 70 100 30	547.460 548.781 553.470 556.817 558.321	A II A II A III A III A II A III	70 30 70 100 30

TABLE III continued

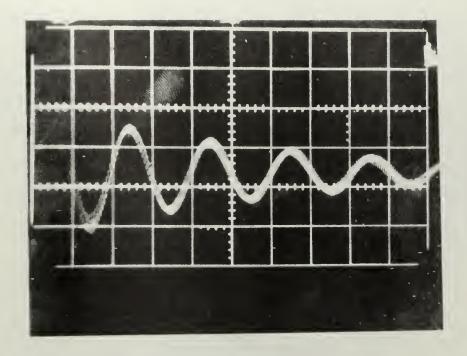
λ	IDENTIFI- CATION	INT	λ	IDENTIFI- CATION	INT
560.223 572.014 573.362 576.736 577.153	A II A II A II A II A II A III	70 50 100 70 10	704.523 718.090 723.361 725.548 730.929	A II A II A II A II A II A II	70 50 100 70 50
578.107 578.386 578.605 579.212 580.263	A II A III A II A III A III A II	50 30 50 50 100	740.269 744.925 748.197 754.824 762.199	A II A II A II A II A II	100 100 30 50 10
583.437 597.700 602.858 604.152 612.372	A II A II A II A III A III A II	70 50 30 70 70	769.152 792.760 793.778 797.720 801.086	A III A III (2×396.380) A IV (2×396.869) A III (2×398.860) A IV	70 50 10 10 10
622.144 623.767 625.852 636.818 637.282	C III A III O IV A III A III	10 50 30 50 100	801.409 834.392 840.029 843.772 850.602	A IV A I A IV A IV A IV	50 10 30 50 70
641.364 641.808 643.256 661.869 664.562	A III A III A III A II A II A II	50 70 50 100 30	871.099 875.534 878.728 879.622 883.179	A III A III A III A III A III	50 50 100 30 50
666.011 670.945 671.851 676.243 677.952	A II A II A II A II A II A II	7,0 1,00 1,00 , 70 50	887.404 900.362 901.168 919.781 932.052	A III A IV A IV A IV A IV A IV	70 30 30 100 70
679.400 683.278 686.488 690.170 691.037	A II A IV A II A III A III A II	100 30 10 100 30	933.060 934.780 936.934 937.912 939.662	A III (2×466.530) A III (2×467.390) A III (2×468.467) A III (2×468.956) A III (2×469.831)	30 70 30 10 50
693.301 695.537 697.489 697.941 698.774	A II A ^I III A II A II A II A II	30 50 10 10 70	939.936 946.050 947.836 952.864 963.696	A III (2×469.968) A III (2×473.025) A III (2×473.918) A III (2×476.432) A III (2×481.848)	30 10 50 70 30

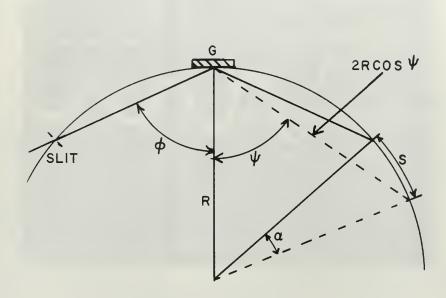

TABLE III concluded

λ	IDENTIFI- CATION	INT	\sim	I DENTIFI- CATION	INT
965.096 968.232 968.890 970.300 971.030	A III (2×482.548) A III (2×484.116) A III (2×484.445) A III (2×485.150) A III (2×485.515)	70 30 30 50 30	1380.728 1446.722 1490.643 1669.304 1669.671	A II A II (2×723.361) A II (2×745.321) A III A III	10 10 10 30 30
974.050 974.454 975.976 977.026 977.585	A III (2×487.025) A II (2×487.227) A III (2×487.988) C III A II (2×488.792)	70 10 10 70 30	1019.575	A III	10
978.391 981.360 982.242 1016.882 1017.222	A II (2x489.195) A III (2x490.680) A III (2x491.121) A III (2x508.441) A III (2x508.611)	10 50 30 70 10			
1023.010 1025.540 1038.654 1045.594 1048.218	A III (2×511.505) A III (2×512.770) A II (2×519.327) A II (2×522.792) A I	50 10 30 30 30			
1049.361 1059.800 1066.600 1071.160 1073.490	A II (2×524.680) A III (2×529.900) A I A III (2×535.580) A III (2×536.745)	30 70 10 10 10			
1076.624 1086.407 1106.940 1113.344 1120.445	C III (2×538.312) A II (2×543.203) A III (2×553.470) A II (2×556.817) A II (2×560.222)	70 10 30 50 10			
1146.724 1153.472 1160.527 1166.873 1215.171	A II (2×573.362) A II (2×576.736) A II (2×580.263) A II (2×583.436) He II	70 10 70 30 100			
1274.564 1323.738 1341.890 1343.703 1358.800	A III (2×637.282) A II (2×661.869) A II (2×670.945) A II (2×671.857) A II (2×679.400)	50 30 10 30 10			

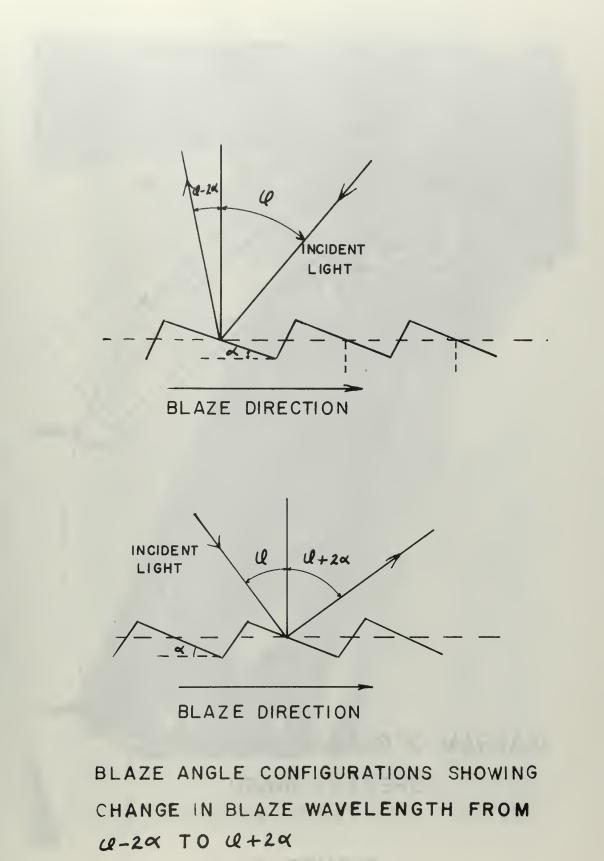

ionization potential for W VI is only 61 volts, intermediate stages of ionization of the Tungsten spectra can be investigated.

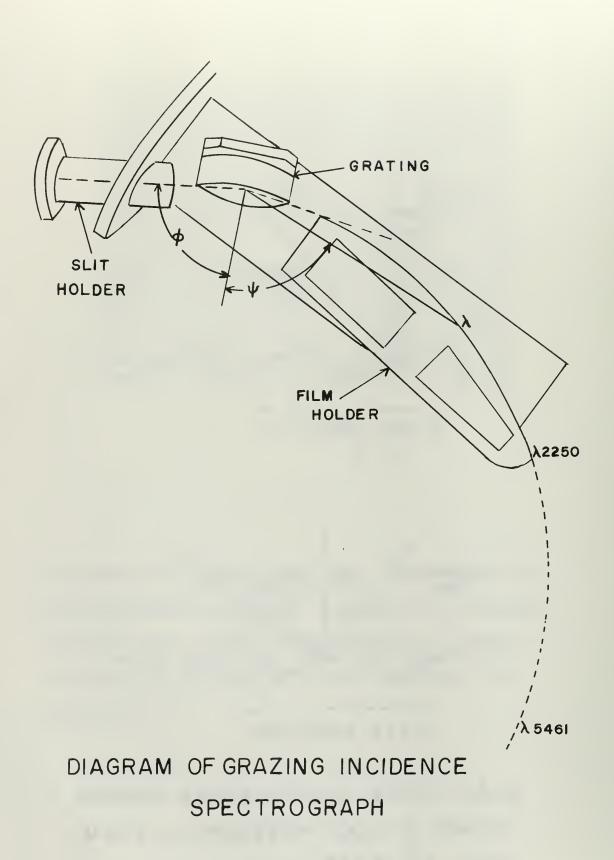
The use of Aluminum with the Tungsten electrode has obvious disadvantages. The many-line spectrum of Aluminum made identification of the film strip very time consuming. It is suggested that future work with Tungsten electrodes in the vacuum spark be done with an electrode other than Aluminum (the Oxygen spectrum which is usually present offers good calibration points).

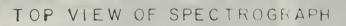

Although the curve-fitting computer program in conjunction with the grating equation program are sufficient to calibrate the spectrograph to an accuracy of ± 0.05A, a bootstrap type program or a regenerating type computer program would be desirable for future work.


100 1 1 state over Jupply with diss controde older

TRIGGER SPARK GAP SWITCH




RINGING FREQUENCY OF SPARK GAP AT 15 KV



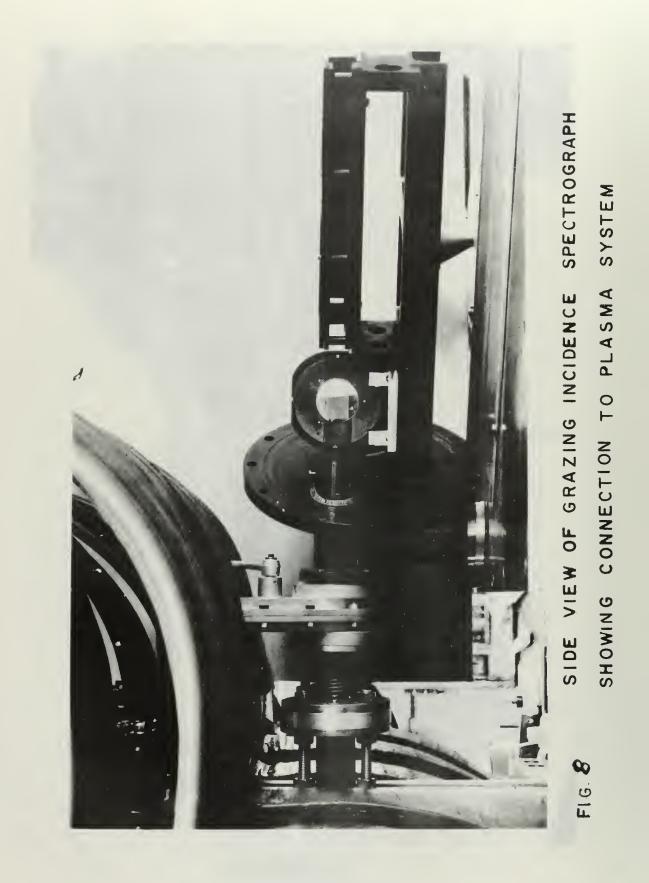
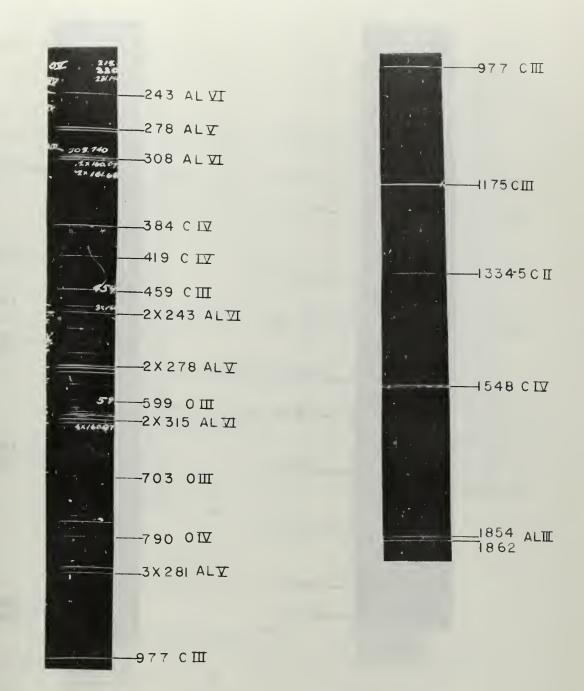

p=2R

DIAGRAM OF VACUUM GRATING SPECTROGRAPH AT GRAZING INCIDENCE. G, GRATING; S, DISTANCE ON ROWLAND CIRCLE FROM CENTRAL IMAGE; $\alpha = 2(\phi - \psi)$; **?**, RADIUS OF CURVATURE OF THE GRATING.

OXYGEN ABSORPTION BANDS

ABSORPTION SPECTRUM OF AIR

FIGURE 9


+9

977.026 904.134-904.468-834.462 833.326 833.742 835.292 832.927 E ∃ c = 0 II 0

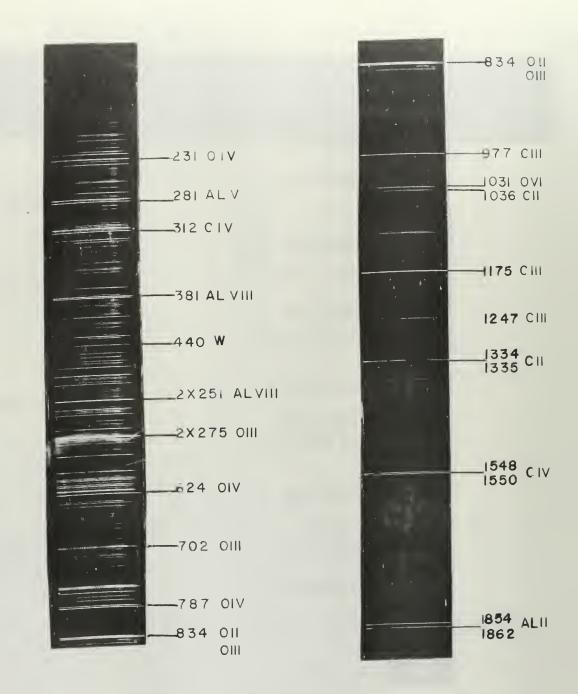
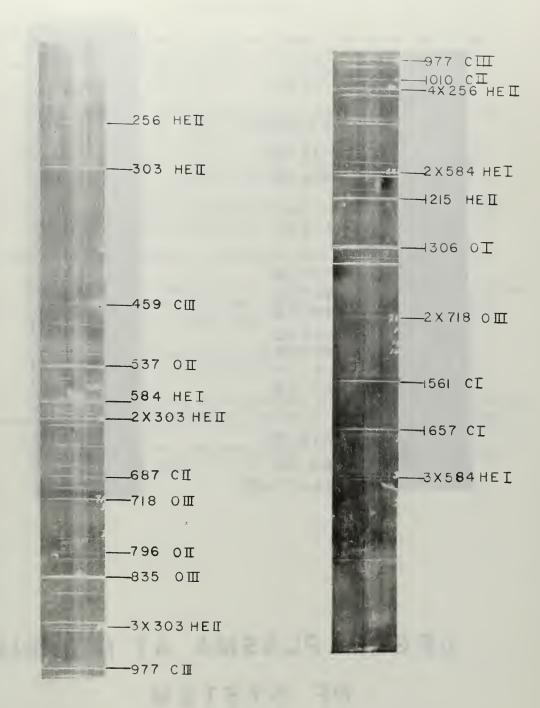
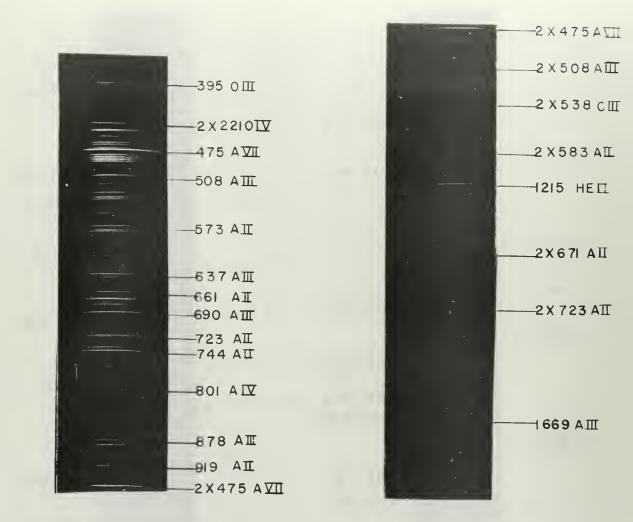

TYPICAL RESULTS OF SPARK GAP SPECTRUM

FIGURE 10


1 1 1 2


CARBON AND ALUMINUM ELECTRODES

TUNGSTEN AND ALUMINUM ELECTRODES FIGURE 12

HELIUM PLASMA

ARGON PLASMA AT MIDPOINT OF SYSTEM

FIGURE 14

I. V.S

BIBLIOGRAPHY

- Lupton, W. H., Fast Triggered Spark Switches for a Two Megajoule Capacitor Bank. Proceedings of the Fifth International Conference on Ionization Phenomena in Gases. v. 1, 1961.
- Beutler, H. G., The Theory of the Concave Grating. J. Opt. Soc. Am., v. 35, May, 1945:311.
- Mack, J. E., Stehn, J. R., Edlen, B., Concave Grating Spectrograph. J. Opt. Soc. Am., v. 22, 1932:245.
- 4. Namieko, T., Theory of the Concave Grating. J. Opt. Soc. Am., v. 49, May, 1959:446.
- 5. Wood, R. W., Optics. The Macmillian Company, 1934.
- Jacobus, G. F., Madden, R. P., Canfield, L. R., Reflecting Films of Platinum for the Vacuum Ultraviolet. J. Opt. Soc. Am., v. 53, 1963:1084.
- Tousey, R., Optical Materials for the Far and Extreme Ultraviolet. J. Opt. Soc. Am., v. 53, 1963:524.
- 8. Kelly, R. L., Vacuum Ultraviolet Emission Lines. University of California Radiation Laboratory Report., 5612, 1959.
- 9. Raney, J. L., Least Squares Curve Fitting with Orthogonal Polynomials. CO-OP ID, E2 UTEX LSCFWOP, 1962.

APPENDIX I

GRATING EQUATION COMPUTER PROGRAM

C THIS PROGRAM IS IN THE FORM OF THE GRATING EQUATION C WITH RH BEING THE ANGLE OF INCIDENCEIN RADIANS, EL C THE DISTANCE FROM AN ARBITARY REFERENCE LINE, AS IS C THE ANGLE OF REFRACTION, ELR IS THE DIFFERENCE OF THE C ANGLES OF REFRACTION AND THE ANGLE OF INCIDENCE AND C DSDLAM IS THE DISPERSION

```
PRUGRAM VUVGISER
   PH = 1.4224431
   SP = SINF(PH)
   X = 0.0
    DX = 0.50
    DO 10 I=1,130
    WAVEL = 1548.195 - X
    ALFA = (SP - WAVEL/16666.67)
   AS = ASINF(ALFA)
    ELR = AS - PH
    EL = ELR*998.0/(16666.67*CUSF(AS))
    PRINT 100, EL, WAVEL, ALFA, AS, ELR, DSDLAM
100 FORMAT(6F20.6)
1 \cup X = X + DX
    STOP
    END
    END
```

APPENDIX II

Least Square Curve Fitting with Orthognal Polynomials

This computer program utilizes least squares curve fitting using orthogonal polynomials, and computes the polynomial of degree K,(K=100), that best fits the data points. Upon completion of the fitting process, the program can evaluate the polynomial at the various abscissa points to obtain new ordinates. These ordinates may then be compared with the orginal ordinates to test the accuracy of the fit.

The easily identified lines of a spectrum are classified as to position and wavelength, and become the original abscissa and ordinate points for the program. The unknown lines are classified as to position only and form the data points for the fitting polynomial. The print-out includes the original abscissa and ordinates points, and the computed ordinate points. The unknown lines now have a computed wavelength corresponding to their position, and have an accuracy determined by the error between the original and computed ordinates points at positions close by.

The orginal abscissa and ordinate points are gradually increased as more and more lines become identified. Broad lines are omitted to improve the accuracy, and the computer print-out is continuely checked to determine the degree of polynomial that gives the best fit.

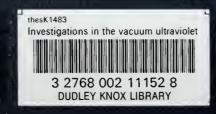
By limiting the region of coverage to about 400A, errors can easily be determined and corrected. For example, the Tungsten spectrum was satisfactorily identified after 7 separate runs.

57

INITIAL DISTRIBUTION LIST

P

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		20
2.	Library Naval Postgraduate School Monterey, California 93940		2
3.	Professor Raymond L. Kelly Department of Physics Naval Postgraduate School Monterey, California 93940		5
4.	Lodr L. E. Kaufman, USN VA-125 N.A.S. Lemoore Lemoore, California 93246		2
5.	Commander, Naval Ordnance Systems Command Hqs., Washington, D. C. 20360		1
6.	Commander, Naval Air Systems Command Hqs. Washinoton. D. C. 20360		1


Security Classification			
DOCU	MENT CONTROL DATA -		
(Security classification of title, body of abstract 1. ORIGINATING ACTIVITY (Corporate author)	ct and indexing annotation must		n the overall report is classified) ORT SECURITY CLASSIFICATION
Ordnance Engineering Progra	ame	EV. NEP	UNCLASSIFIED
Naval Postgraduate School	500	2 b. GRO	
3. REPORT TITLE Investigations in the Vacuu Spectrograph	um Ultraviolet usi	ng a Gra:	zing Incidence
4. DESCRIPTIVE NOTES (Type of report and inclusion	ve dates)		
Thesis			
S. AUTHOR(3) (Lest name, first name, initial)			
Kaufman, Larry E.			
6. REPORT DATE	7. TOTAL NO. 0	58	75. NO. OF REFS
S. CONTRACT OR GRANT NO.	SA. ORIGINATOR		
b. PROJECT NO. N/A			
o.	Sb. OTHER REPO	DRT NO(S) (Ar	y other numbers that may be assigned
d.			
	This document has release and sale;	been app its dist	ribution
11. SUPPLEMENTARY NOTES	12. SPONSORING		
13. ABSTRACT			
A grazing incidence va on high temperature plasmas produced by a vacuum spark grating which has a 1-mete: Incident light strikes the diffracted light is collec: SWR film) which is held alo	s and to investiga source. The spec r radius of curvat grating at an ang ted on a film stri	ite the T strograph sure and ple of 81 .p (15 - in	ungsten spectra uses a concave 600 grooves per mm. .5°, and the
Design and details of	construction of t	he spect	rograph and the

vacuum spark source are presented. A total of 47 new Tungsten lines were identified from the vacuum spark source using Aluminum and Tungsten electrodes.

KEY WORDS	LINK A	LINK	6	LINK
	ROLE W	ROLE	WΤ	ROLE
Grazing Incidence Spectrograph				
Blaze Angle				
Tungsten Spectra				
	1			

UNCLASSIFIED Security Classification

